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Abstract

This paper presents an overview of GeoDaTM, a free software program
intended to serve as a user-friendly and graphical introduction to spatial
analysis for non-GIS specialists. It includes functionality ranging from
simple mapping to exploratory data analysis, the visualization of global
and local spatial autocorrelation, and spatial regression. A key feature of
GeoDa is an interactive environment that combines maps with statistical
graphics, using the technology of dynamically linked windows. A brief re-
view of the software design is given, as well as some illustrative examples
that highlight distinctive features of the program in applications dealing
with public health, economic development, real estate analysis and crim-
inology.
Key Words: geovisualization, exploratory spatial data analysis, spatial
outliers, smoothing, spatial autocorrelation, spatial regression.

1 Introduction

The development of specialized software for spatial data analysis has seen rapid
growth since the lack of such tools was lamented in the late 1980s by Haining
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(1989) and cited as a major impediment to the adoption and use of spatial
statistics by GIS researchers. Initially, attention tended to focus on conceptual
issues, such as how to integrate spatial statistical methods and a GIS environ-
ment (loosely vs. tightly coupled, embedded vs. modular, etc.), and which
techniques would be most fruitfully included in such a framework. Familiar re-
views of these issues are represented in, among others, Anselin and Getis (1992),
Goodchild et al. (1992), Fischer and Nijkamp (1993), Fotheringham and Roger-
son (1993, 1994), Fischer et al. (1996), and Fischer and Getis (1997). Today,
the situation is quite different, and a fairly substantial collection of spatial data
analysis software is readily available, ranging from niche programs, customized
scripts and extensions for commercial statistical and GIS packages, to a bur-
geoning open source effort using software environments such as R, Java and
Python. This is exemplified by the growing contents of the software tools clear-
ing house maintained by the U.S.-based Center for Spatially Integrated Social
Science (CSISS).1

CSISS was established in 1999 as a research infrastructure project funded by
the U.S. National Science Foundation in order to promote a spatial analytical
perspective in the social sciences (Goodchild et al. 2000). It was readily rec-
ognized that a major instrument in disseminating and facilitating spatial data
analysis would be an easy to use, visual and interactive software package, aimed
at the non-GIS user and requiring as little as possible in terms of other software
(such as GIS or statistical packages). GeoDa is the outcome of this effort. It is
envisaged as an “introduction to spatial data analysis” where the latter is taken
to consist of visualization, exploration and explanation of interesting patterns
in geographic data.

The main objective of the software is to provide the user with a natural
path through an empirical spatial data analysis exercise, starting with simple
mapping and geovisualization, moving on to exploration, spatial autocorrelation
analysis, and ending up with spatial regression. In many respects, GeoDa is a
reinvention of the original SpaceStat package (Anselin 1992), which by now
has become quite dated, with only a rudimentary user interface, an antiquated
architecture and performance constraints for medium and large data sets. The
software was redesigned and rewritten from scratch, around the central concept
of dynamically linked graphics. This means that different “views” of the data
are represented as graphs, maps or tables with selected observations in one
highlighted in all. In that respect, GeoDa is similar to a number of other
modern spatial data analysis software tools, although it is quite distinct in
its combination of user friendliness with an extensive range of incorporated
methods. A few illustrative comparisons will help clarify its position in the
current spatial analysis software landscape.

In terms of the range of spatial statistical techniques included, GeoDa is most
alike to the collection of functions developed in the open source R environment.
For example, descriptive spatial autocorrelation measures, rate smoothing and
spatial regression are included in the spdep package, as described by Bivand and

1See http://www.csiss.org/clearinghouse/.
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Gebhardt (2000), Bivand (2002a,b), and Bivand and Portnov (2004). In contrast
to R, GeoDa is completely driven by a point and click interface and does not
require any programming. It also has more extensive mapping capability (still
somewhat experimental in R) and full linking and brushing in dynamic graphics,
which is currently not possible in R due to limitations in its architecture. On the
other hand, GeoDa is not (yet) customizable or extensible by the user, which
is one of the strengths of the R environment. In that sense, the two are seen as
highly complementary, ideally with more sophisticated users “graduating” to R
after being introduced to the techniques in GeoDa.2

The use of dynamic linking and brushing as a central organizing technique
for data visualization has a strong tradition in exploratory data analysis (EDA),
going back to the notion of linked scatterplot brushing (Stuetzle 1987), and var-
ious methods for dynamic graphics outlined in Cleveland and McGill (1988).
In geographical analysis, the concept of “geographic brushing” was introduced
by Monmonier (1989) and made operational in the Spider/Regard toolboxes
of Haslett, Unwin and associates (Haslett et al. 1990, Unwin 1994). Several
modern toolkits for exploratory spatial data analysis (ESDA) also incorporate
dynamic linking, and, to a lesser extent, brushing. Some of these rely on in-
teraction with a GIS for the map component, such as the linked frameworks
combining XGobi or XploRe with ArcView (Cook et al. 1996, 1997, Symanzik
et al. 2000), the SAGE toolbox, which uses ArcInfo (Wise et al. 2001), and the
DynESDA extension for ArcView (Anselin 2000), GeoDa’s immediate predeces-
sor. Linking in these implementations is constrained by the architecture of the
GIS, which limits the linking process to a single map (in GeoDa, there is no
limit on the number of linked maps). In this respect, GeoDa is similar to other
freestanding modern implementations of ESDA, such as the cartographic data
visualizer, or cdv (Dykes 1997), GeoVISTA Studio (Takatsuka and Gahegan
2002) and STARS (Rey and Janikas 2004). These all include functionality for
dynamic linking, and to a lesser extent, brushing. They are built in open source
programming environments, such as Tkl/Tk (cdv), Java (GeoVISTA Studio)
or Python (STARS) and thus easily extensible and customizable. In contrast,
GeoDa is (still) a closed box, but of these packages it provides the most ex-
tensive and flexible form of dynamic linking and brushing for both graphs and
maps.

Common spatial autocorrelation statistics, such as Moran’s I and even the
Local Moran are increasingly part of spatial analysis software, ranging from
CrimeStat (Levine 2004), to the spdep and DCluster packages available on the
open source Comprehensive R Archive Network (CRAN),3 as well as commercial
packages, such as the spatial statistics toolbox of the forthcoming release of
ArcGIS 9.0 (ESRI 2004). However, at this point in time, none of these include
the range and ease of construction of spatial weights, or the capacity to carry
out sensitivity analysis and visualization of these statistics contained in GeoDa.
Apart from the R spdep package, Geoda is the only one to contain functionality

2Note that the CSISS spatial tools project is an active participant in the development of
spatial data analysis methods in R, see, e.g., http://sal.agecon.uiuc.edu/csiss/Rgeo/

3http://cran.r-project.org/
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for spatial regression modeling among the software mentioned here.
A prototype version of the software (known as DynESDA) has been in limited

circulation since early 2001 (Anselin et al. 2002a,b), but the first official release
of a beta version of GeoDa occurred on February 5, 2002. The program is
available for free and can be downloaded from the CSISS software tools web site
(http://sal.agecon.uiuc.edu/geoda main.php).The most recent version, 0.9.5-i,
was released in January 2003. The software has been well received for both
teaching and research use and has a rapidly growing body of users. For example,
after slightly more than a year since the initial release (i.e., as of the end of April
2004), the number of registered users exceeds 1,800, while increasing at a rate
of about 150 new users per month.

In the remainder of the paper, we first outline the design and briefly review
the overall functionality of GeoDa. This is followed by a series of illustrative
examples, highlighting features of the mapping and geovisualization capabilities,
exploration in multivariate EDA, spatial autocorrelation analysis, and spatial
regression. The paper closes with some comments regarding future directions
in the development of the software.

2 Design and Functionality

The design of GeoDa consists of an interactive environment that combines maps
with statistical graphs, using the technology of dynamically linked windows. It
is geared to the analysis of discrete geospatial data, i.e., objects characterized by
their location in space either as points (point coordinates) or polygons (polygon
boundary coordinates). The current version adheres to ESRI’s shape file as the
standard for storing spatial information. It contains functionality to read and
write such files, as well as to convert ascii text input files for point coordinates or
boundary file coordinates to the shape file format. It uses ESRI’s MapObjects
LT2 technology for spatial data access, mapping and querying. The analytical
functionality is implemented in a modular fashion, as a collection of C++ classes
with associated methods.

In broad terms, the functionality can be classified into six categories:

• spatial data manipulation and utilities: data input, output, and conversion

• data transformation: variable transformations and creation of new vari-
ables

• mapping : choropleth maps, cartogram and map animation

• EDA: statistical graphics

• spatial autocorrelation: global and local spatial autocorrelation statistics,
with inference and visualization

• spatial regression: diagnostics and maximum likelihood estimation of lin-
ear spatial regression models
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The full set of functions is listed in Table 1 and is documented in detail in the
GeoDa User’s Guides (Anselin 2003, 2004).4

The software implementation consists of two important components: the
user interface and graphics windows on the one hand, and the computational
engine on the other hand. In the current version, all graphic windows are based
on Microsoft Foundation Classes (MFC) and thus are limited to MS Windows
platforms.5 In contrast, the computational engine (including statistical oper-
ations, randomization, and spatial regression) is pure C++ code and largely
cross platform.

The bulk of the graphical interface implements five basic classes of windows:
histogram, box plot, scatter plot (including the Moran scatter plot), map and
grid (for the table selection and calculations). The choropleth maps, including
the significance and cluster maps for the local indicators of spatial autocor-
relation (LISA) are derived from MapObjects classes. Three additional types
of maps were developed from scratch and do not use MapObjects: the map
movie (map animation), the cartogram, and the conditional maps. The three
dimensional scatter plot is implemented with the OpenGL library.

The functionality of GeoDa is invoked either through menu items or directly
by clicking toolbar buttons, as illustrated in Figure 1. A number of specific ap-
plications are highlighted in the following sections, focusing on some distinctive
features of the software.

Figure 1: The opening screen with menu items and toolbar buttons
4A Quicktime movie with a demonstration of the main features can be found at

http://sal.agecon.uiuc.edu/movies/GeoDaDemo.mov.
5Ongoing development concerns the porting of all MFC based classes to a cross-platform

architecture, using wxWindows. See also Section 7.
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Table 1: GeoDa Functionality Overview
Category Functions

Spatial Data data input from shape file (point, polygon)
data input from text (to point or polygon shape)
data output to text (data or shape file)
create grid polygon shape file from text input
centroid computation
Thiessen polygons

Data Transformation variable transformation (log, exp, etc.)
queries, dummy variables (regime variables)
variable algebra (addition, multiplication, etc.)
spatial lag variable construction
rate calculation and rate smoothing
data table join

Mapping generic quantile choropleth map
standard deviational map
percentile map
outlier map (box map)
circular cartogram
map movie
conditional maps
smoothed rate map (EB, spatial smoother)
excess rate map (standardized mortality rate, SMR)

EDA histogram
box plot
scatter plot
parallel coordinate plot
three-dimensional scatter plot
conditional plot (histogram, box plot, scatter plot)

Spatial Autocorrelation spatial weights creation (rook, queen, distance, k-nearest)
higher order spatial weights
spatial weights characteristics (connectedness histogram)
Moran scatterplot with inference
bivariate Moran scatterplot with inference
Moran scatterplot for rates (EB standardization)
Local Moran significance map
Local Moran cluster map
bivariate Local Moran
Local Moran for rates (EB standardization)

Spatial Regression OLS with diagnostics (e.g., LM test, Moran’s I)
Maximum Likelihood spatial lag model
Maximum Likelihood spatial error model
predicted value map
residual map



GeoDa 7

3 Mapping and Geovisualization

The bulk of the mapping and geovisualization functionality consists of a col-
lection of specialized choropleth maps, focused on highlighting outliers in the
data, so-called box maps (Anselin 1999). In addition, considerable capability
is included to deal with the intrinsic variance instability of rates, in the form
of empirical Bayes (EB) or spatial smoothers.6 As mentioned in Section 2, the
mapping operations use the classes contained in ESRI’s MapObjects, extended
with the capability for linking and brushing. GeoDa also includes a circular
cartogram,7 map animation in the form of a map movie, and conditional maps.
The latter are nine micro choropleth maps constructed by conditioning on three
intervals for two conditioning variables, using the principles outlined in Becker
et al. (1996) and Carr et al. (2002).8 In contrast to the traditional choropleth
maps, the cartogram, map movie and conditional maps do not use MapObjects
classes, and were developed from scratch.

We illustrate the rate smoothing procedure, outlier maps and linking oper-
ations. The objective in this analysis is to identify locations that have elevated
mortality rates and to assess the sensitivity of the designation as outlier to the
effect of rate smoothing. Using data on prostate cancer mortality in 156 counties
contained in the Appalachian Cancer Network (ACN), for the period 1993-97,
we construct a box map by specifying the number of deaths as the numerator
and the population as the denominator.9 The resulting map for the crude rates
(i.e., without any adjustments for differing age distributions or other relevant
factors) is shown as the upper-left panel in Figure 2. Three counties are identi-
fied as outliers and shown in dark red.10 These match the outliers selected in
the box plot in the lower-left panel of the figure. The linking of all maps and
graphs results in those counties also being cross-hatched on the maps.

The upper-right panel in the Figure represents a smoothed rate map, where
the rates were transformed by means of an Empirical Bayes procedure to remove
the effect of the varying population at risk. As a result, the original outliers are
no longer, but a different county is identified as having elevated risk. Also, a
lower outlier is found as well, shown as dark blue in the box map.11 Note that
the upper outlier is barely distinguishable, due to the small area of the county in
question. This is a common problem when working with admininistrative units.
In order to remove the potentially misleading effect of area on the perception
of interesting patterns, a circular cartogram is shown in the lower-right panel

6The EB procedure is due to Clayton and Kaldor (1987), see also Marshall (1991) and
Bailey and Gatrell (1995), pp. 303-308. For an alternative recent software implementation,
see Anselin et al. (2004). Spatial smoothing is discussed at length in Kafadar (1996).

7The cartogram is constructed using the non-linear cellular automata algorithm due to
Dorling (1996).

8The conditional maps are part of a larger set of conditional plots, which includes his-
tograms, box plots and scatter plots.

9Data obtained from the the National Cancer Institute SEER site (Surveillance, Epidemi-
ology and End Results), http://seer.cancer.gov/seerstat/.

10The respective counties are Cumberland, KY, Pocahontas, WV, and Forest, PA.
11The new upper outlier is Ohio county, WV, the lower outlier is Centre county, PA.
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of Figure 2, where the area of the circles is proportional to the value of the EB
smoothed rate. The upper outlier is shown as a red circle, the lower outlier
as a blue circle. The yellow circles are the counties that were outliers in the
crude rate map, highlighted here as a result of linking with the other maps and
graphs.12

Figure 2: Linked box maps, box plot and cartogram, raw and smoothed prostate
cancer mortality rates.

4 Multivariate EDA

Multivariate exploratory data analysis is implemented in GeoDa through link-
ing and brushing between a collection of statistical graphs. These include the
usual histogram, box plot and scatter plot, but also a parallel coordinate plot
(PCP) and three-dimensional scatter plot, as well as conditional plots (condi-
tional histogram, box plot and scatter plot).

We illustrate some of this functionality with an exploration of the relation-
ships between economic growth and initial development, typical of the recent
“spatial” regional convergence literature (for an overview, see Rey 2004). We
use economic data over the period 1980-1999 for 145 European regions, most of

12Note that the outliers identified may be misleading since the rate analyzed is not adjusted
for differences in age distribution. In other words, the outliers shown may simply be counties
with a larger proportion of older males. A much more detailed analysis is necessary before
any policy conclusions may be drawn.
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them at the NUTS II level of spatial aggregation, except for a few at the NUTS
I level (for Luxembourg and the United Kingdom).13

Figure 3: Multivariate exploratory data analysis with linking and brushing.

Figure 3 illustrates the various linked plots and map. The left-hand panel
contains a simple percentile map (GDP per capital in 1989), and a three-
dimensional scatter plot (for the percent agricultural and manufacturing em-
ployment in 1989 as well as the GDP growth rate over the period 1980-99). In
the top right-hand panel is a PCP for the growth rates in the two periods of
interest (1980-89 and 1989-99) and the GDP per capita in the base year, the
typical components of a convergence regression. In the bottom of the right-hand
panel is a simple scatter plot of the growth rate in the full period (1980-99) on
the base year GDP.

Both plots on the right hand side illustrate the typical empirical phenomenon
that higher GDP at the start of the period is associated with a lower growth
rate. However, as demonstrated in the PCP (some of the lines suggest a positive
relation between GDP and growth rate), the pattern is not uniform and there

13The data are from the most recent version of the NewCronos Regio database by Eurostat.
NUTS stands for “Nomenclature of Territorial Units for Statistics” and contains the definition
of administrative regions in the EU member states. NUTS II level regions are roughly compa-
rable to counties in the U.S. context and are available for all but two countries. Luxembourg
constitutes only a single region. For the United Kingdom, data is not available at the NUTS
II level, since these regions do not correspond to local governmental units.
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is a suggestion of heterogeneity. A further exploration of this heterogeneity can
be carried out by brushing any one of these graphs. For example, in Figure 3, a
selection box in the three-dimensional scatter plot is moved around (brushing)
which highlights the selected observations in the map (cross-hatched) and in the
PCP, clearly showing opposite patterns in subsets of the selection. Furthermore,
in the scatter plot, the slope of the regression line can be recalculated for a subset
of the data without the selected locations, to assess the sensitivity of the slope
to those observations. In the example shown here, the effect on convergence over
the whole period is minimal (-0.147 vs. -0.144), but other selections show a more
pronounced effect. Further exploration of these patterns does suggest a degree
of spatial heterogeneity in the convergence results (for a detailed investigation,
see Le Gallo and Dall’erba 2003).

5 Spatial Autocorrelation Analysis

Spatial autocorrelation analysis includes tests and visualization of both global
(test for clustering) and local (test for clusters) Moran’s I statistic. The global
test is visualized by means of a Moran scatterplot (Anselin 1996), in which the
slope of the regression line corresponds to Moran’s I. Significance is based on
a permutation test. The traditional univariate Moran scatterplot has been ex-
tended to depict bivariate spatial autocorrelation as well, i.e., the correlation
between one variable at a location, and a different variable at the neighboring
locations (Anselin et al. 2002a). In addition, there also is an option to standard-
ize rates for the potentially biasing effect of variance instability (see Assunção
and Reis 1999).

Local analysis is based on the Local Moran statistic (Anselin 1995), visu-
alized in the form of significance and cluster maps. It also includes several
options for sensitivity analysis, such as changing the number of permutations
(to as many as 9999), re-running the permutations several times, and chang-
ing the significance cut off value. This provides an ad hoc approach to assess
the sensitivity of the results to problems due to multiple comparisons (i.e., how
stable is the indication of clusters or outliers when the significance barrier is
lowered).

The maps depict the locations with significant Local Moran statistics (LISA
significance maps) and classify those locations by type of association (LISA
cluster maps). Both types of maps are available for brushing and linking. In
addition to these two maps, the standard output of a LISA analysis includes a
Moran scatter plot and a box plot depicting the distribution of the local statistic.
Similar to the Moran scatter plot, the LISA concept has also been extended to
a bivariate setup and includes an option to standardize for variance instability
of rates.

The functionality for spatial autocorrelation analysis is rounded out by a
range of operations to construct spatial weights, using either boundary files
(contiguity based) or point locations (distance based). A connectivity histogram
helps in identifying potential problems with the neighbor structure, such as
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“islands” (locations without neighbors).
We illustrate spatial autocorrelation analysis with a study of the spatial

distribution of 692 house sales prices for 1997 in Seattle, WA. This is part of
a broader investigation into the effect of subsidized housing on the real estate
market.14 For the purposes of this example, we only focus on the univariate
spatial distribution, and the location of any significant clusters or spatial outliers
in the data.

Figure 4: LISA cluster maps and significance maps.

The original house sales data are for point locations, which, for the purposes
of this analysis are converted to Thiessen polygons. This allows a definition of
“neighbor” based on common boundaries between the Thiessen polygons. On
the left hand panel of Figure 4, two LISA cluster maps are shown, depicting the
locations of significant Local Moran’s I statistics, classified by type of spatial
association. The dark red and dark blue locations are indications of spatial
clusters (respectively, high surrounded by high, and low surrounded by low).15

In contrast, the light red and light blue are indications of spatial outliers (re-
spectively, high surrounded by low, and low surrounded by high). The bottom

14The data are from the King County (Washington State) Department of Assessments.
15More precisely, the locations highlighted show the “core” of a cluster. The cluster itself

can be thought of as consisting of the core as well as the neighbors. Clearly some of these
clusters are overlapping.
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map uses the default significance of p = 0.05, whereas the top map is based
on p = 0.01 (after carrying out 9999 permutations). The matching significance
map is in the top right hand panel of Figure 4. Significance is indicated by
darker shades of green, with the darkest corresponding to p = 0.0001. Note how
the tighter significance criterion eleminates some (but not that many) locations
from the map. In the bottom right hand panel of the Figure, the correspond-
ing Moran scatterplot is shown, with the most extreme “high-high” locations
selected. These are shown as cross-hatched polygons in the maps, and almost
all obtain highly significant (at p = 0.0001) local Moran’s I statistics.

The overall pattern depicts a cluster of high priced houses on the East side,
with a cluster of low priced houses following an axis through the center. Put in
context, this is not surprising, since the East side represents houses with a lake
view, while the center cluster follows a highway axis and generally corresponds
with a lower income neighborhood. Interestingly, the pattern is not uniform,
and several spatial outliers can be distinguished. Further investigation of these
patterns would require a full hedonic regression analysis.

6 Spatial Regression

As of version 0.9.5-i, GeoDa also includes a limited degree of spatial regression
functionality. The basic diagnostics for spatial autocorrelation, heteroskedastic-
ity and non-normality are implemented for the standard ordinary least squares
regression. Estimation of the spatial lag and spatial error models is supported
by means of the Maximum Likelihood (ML) method (see Anselin and Bera
1998, for a review of the technical issues). In addition to the estimation itself,
predicted values and residuals are calculated and made available for mapping.

The ML estimation in GeoDa distinguishes itself by the use of extremely
efficient algorithms, that allow the estimation of models for very large data sets.
The standard eigenvalue simplification is used (Ord 1975) for data sets up to
1,000 observations. Beyond that, the sparse algorithm of Smirnov and Anselin
(2001) is used, which exploits the characteristic polynomial associated with the
spatial weights matrix. This algorithm allows estimation of very large data sets
in reasonable time. In addition, GeoDa implements the recent algorithm of
Smirnov (2003) to compute the asymptotic variance matrix for all the model
coefficients (i.e., including both the spatial and non-spatial coefficients). This
involves the inversion of a matrix of the dimensions of the data sets. To date,
GeoDa is the only software that provides such estimates for large data sets.

All estimation methods employ sparse spatial weights, but they are currently
constrained to weights that are intrinsically symmetric (e.g., excluding k-nearest
neighbor weights). The regression routines have been successfully applied to
real data sets of more than 300,000 observations (with estimation and inference
completed in a few minutes). By comparison, a spatial regression for the 3000+
US counties takes a few seconds.

We illustrate the spatial regression capabilities with a partial replication and
extension of the homicide model used in Baller et al. (2001) and Messner and
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Figure 5: Maximum Likelihood estimation of the spatial error model.

Anselin (2004). These studies assessed the extent to which a classic regression
specification, well-known in the ciminology literature, is robust to the explicit
consideration of spatial effects. The model relates county homicide rates to a
number of socio-economic explanatory variables. In the original study, a full ML
analysis of all US continental counties was precluded by the constraints on the
eigenvalue-based SpaceStat routines. Instead, attention focused on two subsets
of the data containing 1412 counties in the US South and 1673 counties in the
non-South.

In Figure 5, we show the result of the ML estimation of a spatial error
model of county homicide rates for the complete set of 3085 continental US
counties in 1980. The explanatory variables are the same as before: a Southern
dummy variable, a resource deprivation index, a population structure indicator,
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unemployment rate, divorce rate and median age.16

The results confirm a strong positive and significant spatial autoregressive
coefficient (λ̂ = 0.29). Relative to the OLS results (e.g., Messner and Anselin
2004, Table 7.1., p. 137), the coefficient for unemployment has become insignifi-
cant, illustrating the misleading effect spatial error autocorrelation may have on
inference using OLS estimates. The model diagnostics also suggest a continued
presence of problems with heteroskedasticity. However, GeoDa currently does
not include functionality to deal with this.

7 Future Directions

GeoDa is a work in progress and still under active development. This devel-
opment proceeds along three fronts. First and foremost is an effort to make
the code cross-platform and open source. This requires considerable change in
the graphical interface, moving from the Microsoft Foundation Classes (MFC)
that are standard in the various MS Windows flavors, to a cross-platform alter-
native. The current efforts use wxWindows, which operates on the same code
base with a native GUI flavor in Windows, MacOS X and Linux/Unix. Mak-
ing the code open source is currently precluded by the reliance on proprietary
code in ESRI’s MapObjects. Moreover, this involves more than simply making
the source code available, but entails considerable reorganization and stream-
lining of code (refactoring), to make it possible for the community to effectively
participate in the development process.

A second strand of development concerns the spatial regression functionality.
While currently still fairly rudimentary, the inclusion of estimators other than
ML and the extension to models for spatial panel data are in progress. Finally,
the functionality for ESDA itself is being extended to data models other than
the discrete locations in the “lattice” case. Specifically, exploratory variography
is being added, as well as the exploration of patterns in flow data.

Given its initial rate of adoption, there is a strong indication that GeoDa
is indeed providing the “introduction to spatial data analysis” that makes it
possible for growing numbers of social scientists to be exposed to an explicit
spatial perspective. Future development of the software should enhance this
capability and it is hoped that the move to an open source environment will
involve an international community of like minded developers in this venture.
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report, Université Montesquieu-Bordeaux IV, Pessac Cedex, France.

Levine, N. (2004). The CrimeStat program: Characteristics, use and audience.
Geographical Analysis. Forthcoming.

Marshall, R. J. (1991). Mapping disease and mortality rates using Empirical
Bayes estimators. Applied Statistics, 40:283–294.



GeoDa 18

Messner, S. F. and Anselin, L. (2004). Spatial analyses of homicide with areal
data. In Goodchild, M. and Janelle, D., editors, Spatially Integrated Social
Science, pages 127–144. Oxford University Press, New York, NY.

Monmonier, M. (1989). Geographic brushing: Enhancing exploratory analysis
of the scatterplot matrix. Geographical Analysis, 21:81–4.

Ord, J. K. (1975). Estimation methods for models of spatial interaction. Journal
of the American Statistical Association, 70:120–126.

Rey, S. J. (2004). Spatial analysis of regional income inequality. In Goodchild,
M. F. and Janelle, D., editors, Spatially Integrated Social Science, pages 280–
299. Oxford University Press, Oxford.

Rey, S. J. and Janikas, M. V. (2004). STARS: Space-time analysis of regional
systems. Geographical Analysis. forthcoming.

Smirnov, O. (2003). Computation of the information matrix for models of spatial
interaction. Technical report, Regional Economics Applications Laboratory
(REAL), University of Illinois, Urbana-Champaign, IL.

Smirnov, O. and Anselin, L. (2001). Fast maximum likelihood estimation of very
large spatial autoregressive models: A characteristic polynomial approach.
Computational Statistics and Data Analysis, 35:301–319.

Stuetzle, W. (1987). Plot windows. Journal of the American Statistical Associ-
ation, 82:466–475.

Symanzik, J., Cook, D., Lewin-Koh, N., Majure, J. J., and Megretskaia, I.
(2000). Linking ArcView and XGobi: Insight behind the front end. Journal
of Computational and Graphical Statistics, 9(3):470–490.

Takatsuka, M. and Gahegan, M. (2002). GeoVISTA Studio: A codeless visual
programming environment for geoscientific data analysis and visualization.
Computers and Geosciences, 28:1131–1141.

Unwin, A. (1994). REGARDing geographic data. In Dirschedl, P. and Oster-
man, R., editors, Computational Statistics, pages 345–354. Physica Verlag,
Heidelberg.

Wise, S., Haining, R., and Ma, J. (2001). Providing spatial statistical data
analysis functionality for the GIS user: the SAGE project. International
Journal of Geographic Information Science, 15(3):239–254.


